Deep neural approach to Fake-News identification
نویسندگان
چکیده
منابع مشابه
Neural Stance Detectors for Fake News Challenge
Fake news pose serious threat to our society nowadays, particularly due to its wide spread through social networks. While human fact checkers cannot handle such tremendous information online in real time, AI technology can be leveraged to automate fake news detection. The first step leading to a sophisticated fake news detection system is the stance detection between statement and body text. In...
متن کاملStance Detection for Fake News Identification
The latest election cycle generated sobering examples of the threat that fake news poses to democracy. Primarily disseminated by hyper-partisan media outlets, fake news proved capable of becoming viral sensations that can dominate social media and influence elections. To address this problem, we begin with stance detection, which is a first step towards identifying fake news. The goal of this p...
متن کاملFake News, Real Consequences: Recruiting Neural Networks for the Fight Against Fake News
The Fake News Challenge (FNC-1) is a public competition that aims to find automatic methods for detecting fake news. The dataset for the challenge consists of headline-body pairs, with the objective being to classify the pairs as unrelated, agreeing, disagreeing, or discussing. We developed four neural network models for FNC-1, two using a feed-forward architecture and two using a recurrent arc...
متن کاملOn the Benefit of Combining Neural, Statistical and External Features for Fake News Identification
Identifying the veracity of a news article is an interesting problem while automating this process can be a challenging task. Detection of a news article as fake is still an open question as it is contingent on many factors which the current state-of-the-art models fail to incorporate. In this paper, we explore a subtask to fake news identification, and that is stance detection. Given a news ar...
متن کاملFake News in Social Networks
We model the spread of news as a social learning game on a network. Agents can either endorse or oppose a claim made in a piece of news, which itself may be either true or false. Agents base their decision on a private signal and their neighbors’ past actions. Given these inputs, agents follow strategies derived via multi-agent deep reinforcement learning and receive utility from acting in acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2020
ISSN: 1877-0509
DOI: 10.1016/j.procs.2020.03.276